Intensité sonore (W·m-2)

200

100

102

10-2

10⁻⁴ · 10⁻⁶ · 10⁻⁸ ·

10-10

0 20

A2 INTENSITE SONORE

Comment traduire la sensation auditive et comment celle-ci évolue-t-elle en fonction de l'intensité sonore?

Doc 1 b

Seuil de douleur

Seuil d'audibilité

2 000

5 000

10 000

Fréquence

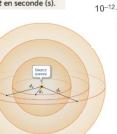
1 000

500

I/ Intensité sonore I (W.m⁻²), et puissance sonore P(W)

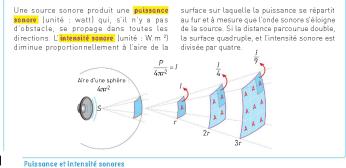
Doc 1 a

L'intensité sonore I correspond à la puissance sonore par unité de surface. L'intensité sonore la plus faible perceptible par l'oreille humaine est de l'ordre de $10^{-12}\,\mathrm{W\cdot m^{-2}}$ (watt par mètre carré). Le seuil de douleur est lui fixé à $1\,\mathrm{W\cdot m^{-2}}$.



Intensité sonore: $I = \frac{\mathscr{F}}{S}$ avec I en W·m², \mathscr{F} la puissance sonore en watt (W) et S l'aire en mètre carré (m²).

Puissance sonore \mathcal{P} : quotient de l'énergie \mathscr{E} en joule (J) par la durée Δt en seconde (s).


Lorsque les ondes s'éloignent de la source dans toutes les directions, la puissance totale P_{tot} émise par la source est répartie sur une sphère de rayon d, égale à la distance parcourue par les ondes.

On peut faire un parallèle entre l'intensité sonore et la puissance solaire par unité de surface. En effet, à une distance d'du Soleil, la puissance solaire par unité de surface est la puissance reçue par une surface de 1 mº sur la sphère céleste de rayon d'entrée sur le Soleil (voir unité 1, chapitre 5).

Doc 1 c

Définition de l'intensité acoustique.

Doc 1 d

Exploitation des documents

- 1°) a) De quels paramètres dépend l'intensité sonore ? Justifier que son unité soit en W.m⁻² L'intensité sonore est la puissance sonore par unité de surface, elle dépend de la puissance sonore en Watts W et de la surface en m², donc elle s'exprime en W/m² ou W.m⁻²
 - b) Montrer que si r' =2xr l'intensité sonore l' est bien divisée par 4 par rapport à l

On a une puissance P pour une distance r

Soit une distance r'= 2xr Alors

$$I' = \frac{P}{S} = \frac{P}{4 \times \pi \times r'^2} = \frac{P}{4 \times \pi \times (2 \times r)^2} = \frac{P}{4 \times \pi \times 4 \times r^2} = \frac{1}{4} \times \frac{P}{4 \times \pi \times r^2} = \frac{I}{4}$$

c) Que devient l'intensité sonore si la distance initiale est multipliée par4?

De la même façon si la distance initiale est multipliée par 4, l'intenisté sonore est divisée par 16

2°) a) Rappeler le domaine fréquences audibles par l'oreille humaine

Domaine de fréquence audible 20Hz à 20 000 Hz ou 20kHz

- b) Quelle est la plus faible valeur d'intensité sonore perçue par l'oreille humaine ? D'après le texte (et le graphique) la plus faible valeur d'intensité sonore perçue par l'oreille humaine est $l_0 = 10^{-12} \, \text{W.m}^{-2}$
 - c) Quelle est l'intensité du seuil de douleur ? L'intensité du seuil de douleur est l_{douleur} = 1 W.m⁻²

II/ Intensité sonore I (W.m⁻²) et Niveau d'intensité sonore L (dB)

Doc 2a

Intensité et niveau d'intensité sonores

Un son peut être caractérisé par son intensité sonore, notée I. Cette grandeur varie généralement entre $10^{-12} \text{W} \cdot \text{m}^{-2}$ (seuil d'audibilité) et $1 \text{ W} \cdot \text{m}^{-2}$ (son intense), voire plus.

Ces valeurs, généralement exprimées en utilisant la notation scientifique et les puissances de 10, sont peu pratiques à manipuler. L'utilisation de la fonction logarithme décimal (log) permet de transposer les intensités sonores en niveau d'intensité sonore L (ou niveau sonore), grandeur exprimée en décibels (dB). $L = 10 \times \log(\frac{I}{L})$, où I_0 (intensité sonore minimale audible) vaut $10^{-12}\,\mathrm{W}\cdot\mathrm{m}^{-2}$

Connaissant la propriété suivante : $\log(10^9) = a$, on montre par exemple qu'une intensité sonore de $10^{-7}\,\mathrm{W\cdot m^{-2}}$ (intensité sonore moyenne dans une salle de classe) correspond à un niveau sonore de 50 dB :

$$L = 10 \times \log \left(\frac{I}{I_{\circ}}\right) = 10 \times \log \left(\frac{10^{-7}}{10^{-12}}\right) = 10 \times \log 10^{5} = 50 \text{ dB}$$

Le niveau sonore traduit ainsi l'intensité d'un son sans utiliser la notation scientifique, ce qui le rend plus pratique à manier.

🕜 À SAVOIR

Le nom «décibel » rend hommage à l'ingénieur américain Alexander Graham Bell (1847-1922), pionnier dans l'invention de la téléphonie. Le niveau sonore O correspondant à la limite d'audibilité de l'oreille humaine

- L est l'initiale de Level en anglais
- Il existe des applications sonomètre téléchargeables sur les smartphones

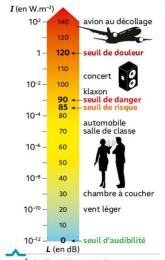
Doc 2b

Le niveau sonore se mesure à l'aide d'un sonomètre. L'appareil mesure la pression acoustique et affiche le niveau sonore en décibets à l'écran.

Doc 2c

1°)

a) Compléter le tableau suivant en utilisant la touche « log » de votre calculatrice.

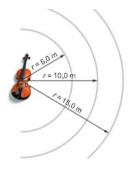

I (W.m ⁻²)	10 ⁻¹²	10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10-4	10 ⁻²	1	100
(I/I ₀)								
	1	100	10000	10 ⁶	10 ⁸	10 ¹⁰	10 ¹²	10 ¹⁴
log(I/I ₀)								
	0	2	4	6	8	10	12	14
10x log(I/I ₀)								
	0	20	40	60	80	100	120	140

b) Retrouvez-vous les valeurs de niveau d'intensité sonore du document cicontre ?(Doc 2d)

Oui elles correspondent. Exemple I =1 L =120 dB

c) Quelle est l'unité de niveau d'intensité sonore ? Pourquoi utilise-t-on cette unité ?

On utilise le décibel car les valeurs sont plus simples à manipuler plutôt que les puissances de 10 de grande valeur.


e. Échelles d'intensité sonore I et de niveau d'intensité sonore L

Doc 2d

Lors d'un concert, comment varient l'intensité sonore et le niveau d'intensité sonore en fonction de la distance et du nombre d'instruments ?

Un spectateur est place à 5m des instrumentistes. Les violons jouent la même note (880 Hz) avec la même intensité.

Nombre Intensité sonore		Niveau d'intensité sonore L (dB)
d'instruments	perçue (W.m ⁻²)	
+	1,0.10 ⁻⁵	70,0 dB
4:	2,0.10 ⁻⁵	73,0 dB
di.		
di Contraction de la contracti	3,0.10 ⁻⁵	74,8 dB
4		
*		

Un seul violon joue pour des spectateurs situés à différentes distances de l'instrumentiste

Distance du	Intensité sonore	Niveau d'intensité sonore L (dB)		
spectateur	perçue (W.m ⁻²)			
5,0 m	1,0.10 ⁻⁵	70,0 dB		
10,0 m	2,5.10 ⁻⁶	64,0 dB		
15.0 m	1.1.10 ⁻⁶	60.5 db		

1°) Lorsque 2 instruments jouent ensemble, les intensités sonores s'additionnent-elles ? Le niveau d'intensité sonore est-il doublé ?

On additionne les intensités sonores mais le niveau d'intensité augmente de 3dB

2°) Montrer par le calcul que si 3 violons jouent ensemble on obtient bien un niveau d'intensité sonore de 74,8 dB

L = 10 x log (I/Io) = 10 x log $(3.10^{-5}/10^{-12})$ = 10 x log (3.10^{7}) = 74,8 dB

3°) Pour la fréquence de la note jouée, à partir du doc 1b déterminer quel est l'intensité du seuil de douleur ? Pour 880 Hz Idouleur=1 W.m⁻²

Quel est le niveau d'intensité sonore correspondant ?

L=120 dB

Combien faudrait-il de violon pour attendre cette intensité sonore ? Un orchestre comprend en général une trentaine de violons. Les spectateurs risquent-ils un danger ?

Pour attendre I =1 W.m $^{-2}$ il faudrait $1/10^{-5}$ = 100 000 violons (je divise l'intensité attendue par l'intensité produite par un seul violon pour avoir le nombre de violons)

Pas de danger pour les spectateurs.