PRÉPARATION D'UNE BOISSON RÉHYDRATANTE

Préparation d'une boisson

Les concentrations molaires des différents éléments qui constituent une boisson réhydratante étant connues, comment préparer une solution de cette boisson ?

Capacités expérimentales évaluées :

- Prélever une quantité de matière d'une espèce chimique donnée.
- Mettre en œuvre le protocole d'une dissolution et d'une dilution.

Principe

Les boissons réhydratantes (Fig. 1) sont d'autant plus efficaces que leur concentration molaire en nutriments est proche de celle du plasma sanguin.

Fig. 1 Les boissons réhydratantes sont utiles pendant l'effort.

Par dissolution et dilution de sucres (glucose et saccharose) et de sel (chlorure de sodium) dans de l'eau, on prépare une telle solution.

Mise en œuvre au laboratoire

Produits

• saccharose et glucose solides • solution S de chlorure de sodium à 5.0×10^{-1} mol \cdot L⁻¹ • eau distillée

On désire préparer 100 mL de solution de boisson réhydratante dont la composition est indiquée dans le tableau ciaprès.

	Glucose	Saccharose	Chlorure de sodium
Formule	C ₆ H ₁₂ O ₆	C ₁₂ H ₂₂ O ₁₁	NaCℓ
Concentration (mmol · L ⁻¹)	110	50	50

 a. Déterminer les quantités de matière de glucose et de saccharose contenues dans la solution à préparer.

Montrer que la masse d'une mole de glucose est de 180 g, celle d'une mole de saccharose est de 342 g. En déduire les masses de glucose et de saccharose à prélever.

- Réaliser les prélèvements et les introduire dans une fiole jaugée de 100 mL.
- a. Quelle quantité de matière de chlorure de sodium la solution à préparer contient-elle?
- b. En déduire le volume de solution S à pipeter.
- Pour prélever la solution S, on dispose de la verrerie représentée sur la figure 2. Laquelle doit-on utiliser?
- Effectuer le prélèvement, en ayant pris soin de rincer auparavant la verrerie avec un peu de solution S, et l'introduire dans la fiole jaugée.
- Agiter la fiole jusqu'à dissolution complète, puis ajuster le niveau jusqu'au trait de jauge avec de l'eau distillée.

Pour conclure

 La concentration en chlorure de sodium de la solution obtenue est de 50 mmol · L⁻¹.

De quel facteur la solution S a-t-elle été diluée ?

Nom de la verrerie	Éprouvette graduée	Pipette jaugée	Pipette graduée
Représentation			
Propriétés .	Permet de prélever un volume de solution qui n'a pas besoin d'être précis.	Permet de prélever des volumes très précis de solution. Les pipettes ont une contenance fixe dont les valeurs les plus courantes sont 5,0 mL, 10 mL et 20 mL.	Permet de prélever des volumes assez précis, de valeur quelconque, de solution.

Fig. 2 Verrerie mise à disposition.